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Here t] has been defined in (2) and qx, qv, and q2 are the 
components of a wave number vector q. The triple 
integral in (3) can be easily reduced to a single integral. 
This single integral was evaluated by an electronic 
computer. The results9 for various t\ are shown in Table 
I. Inserting the numerical values, TV=0.37, | / i | / fe=3, 
5 = | into (3) and using Table I, we obtain ??~0.01. 

The expression for TN obtained by the modified 
molecular field theory or the Bethe-Peierls theory con
tains only the number of neighbors z. Consequently, 
these theories do not take account of dependence on 
structure. On the other hand, the expression of TN by 
the Green function method contains X)q, where q is the 
wave number vector. This indicates the Green function 
method takes account of structure much more precisely 

9 Dr. E. W. Montroll informed me that he has calculated the 
triple integral analytically. {Proceedings of the Third Berkeley 
Symposium on Mathematical Statistics and Probability, December 
1954 and June and July 1955 (University of California Press, 
1955), p. 209.] The numerical values in Table I are in quite good 
agreement with his results. 

INTRODUCTION 

THE electron paramagnetic spectra of divalent 
manganese in several single crystals of axial 

symmetry have shown weak lines occurring between 
the usual intense main hyperfme lines.1-7 These were 

* Present address: Hebrew University, Jerusalem, Israel. 
i E. Friedman and W. Low, Phys. Rev. 120, 408 (1960). 
2 L. M. Matarrese, J. Chem. Phys. 34, 336 (1961). 
3 B. Bleaney and R. S. Rubins, Proc. Phys. Soc. (London) 77, 

103 (1961). 
4 V. J. Folen, Phys. Rev. 125, 1581 (1962). 
5 J. Schneider and S. R. Sircar, Z. Naturforsch. 17a, 651 (1962). 
6 F. Waldner, Helv. Phys. Acta 35, 756 (1962). 
7 M. Odenhal, Czech. J. Phys. B13, 566 (1963). 

TABLE I. Numerical values for the integral Ify). 

_v m_ 
1 0.505 
0.1 1.963 
0.01 6.405 
0.001 20.323 

than the other theories. In the present problem the 
structure dependence is essentially important. In other 
words, the magnetic property of C^NH^SOrH^O is 
well described by the linear chain model, but it is 
slightly modified by the exchange interactions between 
the chains. This is the reason why the Green function 
method can give a reasonable value for | ^ 2 | / | / i | , 
although the other theories fail. 
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first observed by Bleaney and Ingram8 and are due to 
the mixing of hyperfme levels by the interaction of the 
axial-field splitting D with the hyperfme interaction A. 
Bleaney and Rubins, however, point out that this 
mixing should occur whenever the magnetic field is 
not directed along an axis of twofold or higher sym
metry.3 In the present paper, we have observed the 
forbidden lines in the cubic field of MgO and have 
shown that they are due to hyperfme mixing with the 
zero-field cubic splitting a. 

8 B . Bleaney and D. J. E. Ingram, Proc. Rov. Soc. (London) 
A205, 336 (1951). 
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The so-called "forbidden" hyperfine transitions of the S-state ion Mn+ + with selection rules \AM | = 1 , 
A M = ± 1 have been observed in the cubic field of MgO. These transitions are shown to be observable in cubic 
fields because of the mixture of the zero-field splitting parameter a with the off-diagonal hyperfine terms in 
the spin Hamiltonian which mixes neighboring hyperfine levels. Until now the intensities of these transitions 
had been calculated only in crystals of axial symmetry and were due to the mixing of levels with axial-field 
splitting D. The intensity for the cubic-field case is calculated and shows an interesting (sin40)2 dependence, 
as compared with (sin20)2 in the axial field case. The splittings of the "forbidden" doublets are calculated 
to third-order perturbation theory and both the intensities and the splittings agree well with the experimental 
data. 
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The intensity calculation for the cubic field case is 
presented and is based on the simpler example of the 
axial-field case. The forbidden doublet splitting is also 
evaluated to third-order perturbation using the operator 
equivalent notation. A comparison between theory and 
experimental results is made. 

THEORY 

So-called forbidden hyperfine transitions occur 
through the mixing of neighboring hyperfine levels by 
off-diagonal matrix elements in the spin Hamiltonian. 
Allowed transitions induced by the component of the 
rf magnetic field perpendicular to the axis of quantiza
tion are those for which \AM\ = 1, Am=0} where M 
and m are, respectively, the electron- and nuclear-
magnetic quantum numbers. Forbidden hyperfine tran
sitions are then those for which |AM|=1, A w = ± l , 
±2 , etc. Whether or not a transition is considered as 
forbidden depends upon the manner in which the energy 
states are labelled. For this paper, we choose a repre
sentation in which the external magnetic field H forms 
the axis of quantization. Off-diagonal matrix elements 
arising from other terms in the spin Hamiltonian are 
then treated by perturbation theory and lead to an 
admixture of zero-order wave functions. 

Apart from transitions induced by the parallel com
ponent of the rf field, for which AM= ± 1 , Aw==Fl, 
two other mechanisms are known to produce forbidden 
hyperfine lines. These are through the nuclear-quadru-
pole interaction, the effects of which should not be 
observable in a cubic field, and second-order crossterms 
between the hyperfine and fine-structure operators in 
the spin Hamiltonian. The latter have been considered 
by Bleaney and Rubins for the case of a second-order 
axial term in the crystalline field. The method depends 
upon the presence of crystal-field terms containing odd 
powers of Sx and Sy which may form operators to raise 
or lower M by unity, without affecting m. 

Intensity 

To illustrate the calculation, we first consider the 
simpler case of an axial field with the magnetic field 
along the z axis and at an angle 6 to the crystalline axis 
in the %'z' plane. The relevant part of the nondiagonal 
term is then equal to 

D 
W,i=—{SzS++SzS-+S+Sz+SSz) cos0 sin0, (1) 

2 

where S±= (Sx±iSy). The first-order admixtures of the 
states \Mzkl,m) to \M,m) are given by the perturba
tion expression 

(Mdzl, w|3Ci| Af, tn)/(EMtm—EM±i,m), (2) 

where EM,m—EM±i.n&rFgPB[. In the second order, it 
is possible to mix neighboring hyperfine levels \M,tn) 
and | M, m ± l ) by use of off-diagonal elements in the 
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.PIG. 1. An example of the mixing of neighboring hyperfine 

states. The operations shown form a, where 5Ci is a raising operator
like S+ and 5C2 is S-I+. Similar operations will form /3, #, y, and 5. 
When the "allowed" selection rules \AM\ = 1 , Aw = 0 are applied 
like S+ and 5C2 is S-I+. Similar operat ,_, „, ,, 
When the "allowed" selection rules \AM\ = 1 , Aw = 0 are applied 
between levels \pi and ^2, the intensity is then seen to be propor-

(«+7)2. 
between n,vwa *_ 
tional to (a+7)2 

hfs interaction, written for simplicity as 

K2=ASJ.+$A (5+/_+5_7+). (3) 

The second-order admixture may be written immedi
ately as 

(M, m± 113C21 Mzk 1, m)(Mdb 1, m \ 3Ci | M,m) 

(EM,m—EM,m±l) (EM\m~EM±\,m) 
(4) 

EMim—EM,m±i is only ±AM, so that the denominator 
is proportional to AM(gfiH) and the numerator to AD. 
The admixture of neighboring hyperfine levels is thus 
proportional to D/gfiH. Although obtained by a second-
order calculation, the magnitudes are effectively an 
order lower. It is, of course, possible to take 5Ci and 3C2 

in the reverse order. In Fig. 1, the operations connecting 
states \M,m) and \M, w+1) are shown schematically. 
A similar sequence of operations connects \M,m) and 
\M, m— 1). If only these admixtures are considered, 
the perturbed function | M,m) may be written 

#L= \M,tn)+a\M, tn+l)+p\M, m - 1 ) . (5) 

If the transition between the levels \M,m) and 
\M— 1, m) is considered to have unit probability, then 
that between | M,m) and the perturbed level 

yp2=\M-l9m+l)+y\M-l,m)+8\M-l,m+2) (6) 

must have probability (a+7)2. The same expression 
can be shown to hold for the transition between the 
unperturbed levels \M,m+l) and \M—\,m). An 
alternate though equivalent formalism was used by 
Bleaney and Rubins who combined 3Ci and 5C2 to form 
an equivalent operator to connect neighboring hyperfine 
levels. Thus, in the axial field, the off-diagonal terms 
DSZS+ and (A/2)SJ[+ are combined to form an equiva
lent operator proportional to (AD/gpH)(SzS+S-)I+. In 
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the remainder of this section, we calculate (a+7)2 for 
the case of a cubic fourth-order crystal field. 

The spin Hamiltonian describing the d5 (S state) ion 
in a cubic crystalline field may be written 

W=SPHzSz+AS-I+Vcuhic-gnPnHJs, (7) 

where the terms are given in the order of magnitude 
observed for Mn2+ in cubic oxide lattices.9 Fcubio 
represents the fine-structure term and may be written 

a 
V cubic = " ~ L ^ a ; ' • ^y' 1*^2' 

6 

-1S(S+1)(3S»+3S-1)] , (8) 

where the three fourfold axes of the cube lie in the 
x'9 y', and z' directions. Alternatively, in the notation 
of Jones, Baker, and Pope,10 the cubic term is 

FcubiC=34
0(O40+5O44), (9) 

For the case of the central electronic transitions 
M=i<-*M=— \ with 5=f, Eq. (11) reduces to 

5a sin40 
a = T = [ j ( / + 1 ) _ w ( m + 1 ) ] i / 2 > (12) 

2gpH 

so that the relative intensity of the transitions 
I!,*»}«-»I — I, m+1) and | | , m+l)<^\ — J, m) is given 
by 

25a2 

/ = [J(J+l)-w(m+l)](sin40)2 . (13) 
(gpH)2 

The distinguishing feature of these forbidden transi
tions is their (sin40)2 angular dependence, which may be 
contrasted with the (sin20)2 variation from forbidden 
transitions in an axial field. Their intensities relative 
to allowed transitions are proportional to a2/(gPH)2. 
Consequently, they diminish in intensity as the meas
uring frequency is increased. Taking the particular 
case of Mn2+ in MgO, a/gPH is approximately 1/150 
at 3 cm wavelength, so that the relative intensities of 
the central pair of forbidden lines | | , ± J ) <-»| —J, =F|) 
should be (sin40)2/lOO to that of the allowed transitions 

li±*WI-4,±i>. 
9 W. Low and R. S. Rubins, in Proceedings of the First Inter

national Conference on Paramagnetic Resonance (Academic Press 
Inc., New York, 1963). 

10 D. A. Jones, J. M. Baker, and D. F. D. Pope, Proc. Phys. 
Soc. (London) 74, 249 (1959). 

where B£=a/\2Q, and quantization is along one of the 
three fourfold axes. 

For the relative-intensity calculation, we consider 
the case when the magnetic field Hz lies in the %fz' 
plane of the cube, making an angle 0 with the zf axis. 
Then, we have #=#'cos0— z'sinfl, y=yf

7 z=z'co$6 
+x' sin0, which, when substituted into Eq. (8) and 
considering only odd terms of Sx and Sy, gives 

FCubic(odd) = a(P-R) sin40/24, (10) 
where 

P — (px ^er^xOzOx + O o ; 62Oa;+»JgOa; ) 

and 
^ = = (*->« ^aTnOisOjcOjs ~TOz O $ 0 $ + O 3 O z ) • 

In the operator equivalent notation, the terms of P—R 
that raise and lower the electronic wave function by 
one step are proportional to O41 and form the operator 
Xi, which is substituted into Eq. (4) together with 
5C2=^4S'I. Equation (4) has then been evaluated to 
give 

Doublet Splitting 

Here, we shall confine our discussion to the central 
electronic transition ikf=|<-»ilf=—|. The spectrum 
is basically the same as that described for axial-field 
cases: a pair of small "forbidden" lines lying between 
each two main hyperfine lines. Figure 2 shows an 
example of the allowed lines ||,m)<-»| — §, m) and 
| | , m+1)<->\ —I, m+1), with the forbidden lines 
||,m)<->|—I,m+1) and | | , m+l)<r+\ — \,m) between 
them. For comparison with experiment, we shall be 
concerned with the separations 8H (in gauss) of the 
two forbidden lines as a function of m. To the second 
order, the splittings are given by 

A2 

5#= [25(5+l)- l]+2gn j8wH, (14) 
2gPH0 

where g(3Ho=hv. Third-order contributions to 6H have 
been considered for the case of an axial field by Folen,4 

Schneider and Sircar,5 Waldner,6 and Odenhal.7 

The relevant contribution of third-order energy term 
may be written 

{oLnn *&>mm) tK-nm 
£M(3)= £ !_ (15) 

»*m (E r o-E„) s 

as no terms proportional to SCmnKn^Ckmim^n^k) 
are present. There are only two terms in third order 
which will contribute to the splitting. The most impor-

a sin40j [ 5 ( 5 + l ) - J f (M + l ) ] ( 2 M + l ) [ 3 5 ( 5 + l ) - 7 1 f 2 - 7 1 f - 6 ] 

192M1 EM-EM+I 

lS(S+l)-M(M-l)~](2M-l)Z3S(S+l)-7M2+7M-6~] 

EM—EM-I 

[I(I+\)-m{m+V)JiK (11) 
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FIG. 2. Schematic of 
the A f = ± i fine-struc
ture levels split by the 
hyperfine interaction. 
The outer two transi
tions shown are allowed 
while the center two are 
so-called "forbidden." 
The spectrum is shown 
below the energy levels 
with arbitrary scale. 

tant of these is11 

25 A* 
5H'= f v[25(5+l)-f](2m+l). (16) 

32 (g/3Ho)2 

The second term will be proportional to A2a/Ha2 

and has not previously been calculated. Clearly, the 
off-diagonal matrix elements |3CWm|2 are produced by 
the hfs operator AS*I and the diagonal operator 
(3Cnn—3Cmm) by the diagonal part of the cubic field. 
When the axis of quantization is at an angle 6 to a cubic 
axis, Table 5 of Ref. 10 shows that this operator is 
given by 

£4°(f+fcos40)O40, (17) 

where JB4° = a/120. Matrix elements of OA° have been 
tabulated by Stevens.12 This contribution to the split
ting is then calculated to be 

6H"* 
5A2a 

4(gpHQ) 
£5(5+l)-i] 

X(2f»+l)(f+fcos40). (18) 

In the above, only the first-order contribution of the 
nuclear Zeeman term gwj8wH«I has been considered. 

EXPERIMENTAL APPARATUS 

The sample crystal was- mounted in the center of a 
TEon cylindrical reflection cavity with the longitudinal 
axis perpendicular to the magnetic field such that there 
would be no component of the rf field Hi parallel to the 
steady magnetic field Ho. The Q of the cavity was about 
10 000 and most measurements were made at room 
temperature. The system was also suitable for liquid-air 
temperature by the insertion of a quartz Dewar finger 
into the cavity. The spectrometer used was a high-
sensitivity superheterodyne X band system and was 

11 Equation (16) contains the correction to third order which is 
obtained from the second-order contribution by replacing H by 
Ho+Atn in the denominator of the first term of Eq. (14). Waldner 
had neglected the contribution from the first term in Eq. (15) but 
it is given in his corrigendum, Helv. Phys. Acta (to be published). 
The calculation of Schneider and Sircar appears to give the correct 
result. 

12 K. W. H. Stevens, Proc. Phys. Soc. (London) A65, 209 
(1952). 

operated near 10 Gc/sec with the signal klystron locked 
to the sample cavity with a 22-kc/sec feedback loop. 
The magnetic field was modulated at 390 cps and was 
phase-detected such that the first derivative of the 
absorption signal was recorded. All field measurements 
were made with a nuclear magnetic resonance proton 
probe. 

EXPERIMENTAL RESULTS 

From Eqs. (14), (16), and (18), the splittings of the 
forbidden doublets in the central electronic transitions 
for 5 = f may be written as 

8H~-
17 A2 

2 Ho 
-+2 H (2m+1) 

A*a/2S 15\ 
( — cos40H— )(2f»+l), (19) 

27o2\ 4 4 / 
where H0 has been substituted for gfiH0. The first term 
is the only constant term and gives the main contribu
tion to the splitting. Table I shows the contributions 

TABLE I. This table shows the contribution in gauss to each 
term in the equation for the splitting of the forbidden doublet. 
The calculated total is compared to the experimentally measured 
value. 

m \ 
17^2/2^0 
2(y0 a/gfi)H 
~(25A*/2H0

2)(2m+l) -
- (15.4V4#o 2 ) (2m+l) 

Theoretical total 8H 
Experimental 8H 

- * 
17.6±0.1 
2.6 

-2.5 
0.2 

17.9=1=0.1 
18.0±0.5 

1 

- f 
17.6 
2.7 

- 1 . 2 
0.1 

18.8 
19.0 

m 
-i 
17.6 
2.7 
0 
0 

20.3 
20.2 

i 
17.6 
2.8 
1.2 

- 0 . 1 

21.5 
21.9 

f 
17.6 
2.9 
2.5 

- 0 . 2 

22.8 
23.2 

of each term and compares the total to a typical experi
mental run. The m value signifies the next main hyper
fine line below the doublet; i.e., m=— f means the 
doublet which occurs between the hyperfine lines 
m= — f and m= — f. The second term varies only with 
the changing magnetic field and the last two terms 
change with the different m values. Only the last term 
varies with angle, but in such a way that the maximum 
and minimum splittings are at positions of zero intensity 
(zero, 45, 90 degrees) and the splittings of the forbidden 
doublets are the same at each position of maximum 
intensity (22J, 67^ degrees). Because of the highly 
anisotropic behavior of the fine-structure pentad of 
Mn2 + in MgO, the doublets were easily observable only 
over small ranges of angles of about 10-14 degrees each 
in several positions; but, fortunately, these are at the 
most interesting positions: namely, zero, 22J, 45, 67J, 
and 90 degrees. The value given for this term in Table I, 
therefore, has not taken into account the angular part 
as cos40 is zero at the maximum intensity positions. 
Because of the small value of a in MgO: Mn2+ the magni-
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tude of the term is comparable to the experimental error 
and, therefore, the magnitude of the change in separa
tion due to angle is unnoticable. 

Figure 3 shows the low-field half of the usual spectrum 
of MgO:Mn2+ with the magnetic field oriented about 
25 degrees from the z' axis in the xfzf plane. The arrows 
point to the positions of the "forbidden" hyperfine 
doublets. Figure 4 shows the doublet between m——\ 
and m= — \ on an expanded horizontal scale and a 
signal-gain increase of 28 dB. The entire spectrum 
shows the doublets to have the usual relative intensity 
ratios to each other of 5:8:9:8:5 and the relative 
intensity to the main hyperfine line of about 1:100 as 
predicted. Runs were made at liquid-air temperatures, 
but no changes within experimental error were observed. 

DISCUSSION 

The most distinctive feature of the forbidden doublets 
is the angular dependence of their intensity. Unlike the 
axial case, there is an intensity minimum at 0=45° 
and equivalent orientations. As may be seen from the 
experimental data, the intensities are extremely small, 
which is probably why these lines have previously es
caped serious consideration. Also, because of the small 
magnitude of a, the lines are centered between the main 
hyperfine lines and are almost isotropic. 

In the case of a field of tetragonal or trigonal sym
metry, both cubic and axial components will be present, 
so that the angular variation of intensity will be more 
complicated. For example, in a tetragonal field the in
tensity will vary as ^(sin20)2+5(sin40)2. In the lower-
symmetry cases considered, the axial component has 
been much greater than the cubic component so that 
the forbidden transitions produced by the sixth-order 
cubic field may be calculated in a similar manner to 

FIG. 3. The low-
field half of the usual 
spectrum for Mn2+ 

impurities in MgO. 
The arrows point to 
the positions of the 
very low intensity 
"forbidden" hyper
fine transitions. The 
magnetic field is ori
ented at about 25 
degrees from the %' 
axis in the x'z' plane. 

FIG. 4. An example 
of the data showing 
the forbidden doub
let between the 
m=—\ and m——\ 
hyperfine lines. This 
is the same doublet 
as shown in Fig. 3 
but on an expanded 
horizontal scale and 
a signal-gain increase 
of 28 dB. 

that of the fourth-order field, and the intensity variation 
would again be as (sin40)2. 

The calculations carried out in this paper have been 
those which could be compared directly with experiment. 
For this reason, the results for forbidden lines in the 
outer electronic transitions have not been given here. 
Their approximate positions have been indicated by 
Bleaney and Rubins. 

The agreement with the theory, which was well 
within the experimental error, ruled out any need to 
extend the calculations to higher order. The fourth-
order contribution to the splitting is probably well 
within 0.5 G, and, like the second-order, probably 
does not produce terms proportional to (2ra+l). Also, 
because the symmetry is cubic, the effect of the man
ganese nuclear quadrupole moment should not be ob
servable; this term, therefore, does not appear in our 
Hamiltonian. The good results would therefore indicate 
that the method of Folen, Waldner, Schneider and 
Sircar, and Odenhal in fitting their data with an effective 
Q is basically valid. However, our results have shown 
that there is a small cubic contribution which should be 
considered for accurate work or narrow-line spectra in 
order to improve the results of the effective quadrupole 
determination. Measurements at higher frequencies to 
reduce the magnitude of the second- and higher-order 
effects would improve the degree of certainty of the 
result. 
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